SILABO

1. INFORMACION GENERAL

Nombre del curso : Laboratorio de Circuitos Eléctricos II

Código del curso : ML 125

Especialidad : Ing. Mecánica-Eléctrica

Condición : Obligatorio

Ciclo de estudios : 6º

Pre-requisitos : ML 115, ML 124

Número de créditos : 01
Total de horas semestrales: 28
Total de horas por semana: 02
Teoría : 00
Practica : 00
Laboratorio : 02

Duracion : 17 SEMANAS

Sistema de evaluación : D Profesores de teoría -

y práctica : Ing. Bernabé Tarazona Bermúdez

2. SUMILLA

Relaciones escalares y complejas en circuitos eléctricos lineales. Potencia y factor de potencia en circuitos monofásicos y trifásicos. Resonancia en circuitos eléctricos lineales. Medida de la energía. Desfasamiento de ondas sinusoidales en circuitos R-C. Determinación de la secuencia de fases en un sistema trifásico. Medida de la potencia activa en circuitos trifásicos balanceados y desbalanceados. Medida de la inductancia en un circuito acoplado. Corrección del factor de potencia en circuitos monofásicos.

3. OBJETIVO

Los alumnos, al finalizar el curso, utilizando instrumentos de medición y los equipos apropiados, estructurarán circuitos eléctricos de corriente alterna; seleccionando los componentes apropiados. Asimismo, elaborarán un informe técnico; explicando los circuitos eléctricos estructurados, así como su funcionamiento; sustentando los resultados obtenidos.

4. PROGRAMA

SEMANA N° 1:

Introducción, formación de grupos de trabajo, manejo de instrumentos.

SEMANA N° 2:

Experiencia 1.

RELACIONES ESCALARES Y COMPLEJAS EN CIRCUITOS ELECTRICOS LINEALES.

Deducir experimentalmente la variabilidad de la corriente y caídas de tensión a través de los elementos R-L-C al aplicarles una tensión sinusoidal.

SEMANA N° 3:

Experiencia 2.

CIRCUITOS TRIFASICOS BALANCEADOS.

Analizar y evaluar en forma experimental la medida de voltaje, corriente, potencia activa y factor de potencia en circuitos trifásicos balanceados.

SEMANA N° 4:

Sustentación oral de Informes de las experiencias 1 y 2

SEMANA N° 5:

Experiencia 3.

MEDIDA DE LA ENERGIA Y POTENCIA EN CIRCUITOS ELÉCTRICOS MONOFASICOS DE CORRIENTE ALTERNA.

Evaluar y analizar la medida de la energía y potencia en un circuito monofásico de corriente alterna.

SEMANA N° 6:

Experiencia 4.

DESFASAMIENTO DE ONDAS SINUSOIDALES EN CIRCUITOS R-C

Determinar el ángulo de fase entre la tensión y la corriente en un circuito R-C mediante un osciloscopio, Por los métodos de superposición de ondas y lissajous.

SEMANA N°7:

Sustentación oral de Informes de las experiências 3 y 4

SEMANA N° 8:

EXAMEN PARCIAL

SEMANA N° 9:

Experiencia 5.

RESONANCIA EN CIRCUITOS ELECTRICOS LINEALES.

Evaluar y analizar en forma experimental las características de resonancia en circuitos eléctricos lineales.

SEMANA N° 10:

Experiencia 6.

MEDIDA DE LA INDUCTANCIA MUTUA EN UN CIRCUITO ACOPLADO.

Analizar y evaluar el acoplamiento magnético que existe en un circuito acoplado. Determinar el coeficiente de acoplamiento magnético "K" y el coeficiente de inducción mutua "M" en medida alterna.

SEMANA N° 11:

Sustentación oral de Informes de las experiencias 5 y 6

SEMANA N° 12:

Experiencia 7.

CIRCUITOS TRIFASICOS DESBALANCEADOS.

Analizar y evaluar en forma experimental la medida de voltaje, corriente, potencia activa y factor de potencia en circuitos trifásicos desbalanceados.

SEMANA N° 13:

Experiencia 8.

MEDIDA DE VALORES MEDIOS Y EFICACES EN CIRCUITOS MONOFASICOS Y TRIFASICOS.

Evaluar y analizar experimentalmente los valores medios y eficaces en un circuito monofásico con rectificador de media onda y onda completa y un circuito trifásico con rectificador de media onda.

SEMANA N° 14:

Sustentación oral de Informes de las experiencias 7 y 8

SEMANA N° 15:

Sustentación Escrita

SEMANA N° 16:

EXAMEN FINAL

SEMANA N° 17:

EXAMEN SUSTITUTORIO

5. ESTRATEGIAS DIDACTICAS

Se presentara una teoría básica de los temas de las Experiencias, antes de cada Laboratorio, exigiendo a los alumnos la presentación de informes previos relacionados al tema del Laboratorio. Se debe propiciar y estimular la participación de los alumnos en cada Experiencia. Mediante los Tests y los informes previos motivar a los alumnos una lectura previa del tema de la Experiencia.

6. MATERIALES EDUCATIVOS Y OTROS RECURSOS DIDACTICOS

Utilización del Protoboard y componentes de acuerdo al esquema del circuito a implementar en el Laboratorio. Utilización de Módulos diseñados para la Experiencia determinada. Uso de calculadora científica. Información obtenida en la Biblioteca de acuerdo a una Bibliografía recomendada. Información obtenida en el Internet.

7. EVALUACIÓN

a. Sistema de Evaluación

El sistema de evaluación que se usa es el sistema D. Promedio de las Notas de las ocho Experiencias realizadas durante el ciclo.

$$NC = \frac{\sum Laboratorios}{8}$$

N.C. = Nota del curso

8. BIBLIOGRAFIA

[1] ELEODORO AGREDA : "Manual de laboratorio de Circuitos

Eléctricos II"

[2] ROBERT BOYLESTAD : "Análisis Introductorio de Circuitos

Eléctricos"

[3] RICHARD C. DORF : "Circuitos Eléctricos (Introd. al análisis y

diseño)"

[4] DAVID JOHNSON : "Análisis Básicos de Circuitos Eléctricos"

[5] NILSSON : "Análisis de Circuitos Eléctricos"

[6] KERCHNER Y CORCORAN: "Circuitos eléctricos de corriente alterna"

[7] HAYT KEMMERLY : "Análisis de Circuitos en Ingeniería"

[8] O. MORALES, F. LOPEZ : "Circuitos Eléctricos I y II"

[9] SCOTT : "Line Circuits" Tomos I y II

Lima, octubre de 2011