

# NATIONAL UNIVERSITY OF ENGINEERING COLLEGE OF SCIENCES

# COMPUTER SCIENCE PROGRAM

#### CC212 - COMPUTER ARCHITECTURE

### I. GENERAL INFORMATION

**CODE** : CC212 – Computer Architecture

SEMESTER : 4 CREDITS : 4

**HOURS PER WEEK** : 6 (Theory - Laboratory)

**PREREQUISITES**: CM102 Introduction to Programming,

CM254 Introduction to Discrete Mathematics

**CONDITION** : Mandatory

#### II. COURSE DESCRIPTION

Allow the student to properly manage the hardware and software of a computer system. Guarantee the good performance and efficiency of the future codification. Demonstrate that the evolution of computer architecture is a consequence of the progress and development of both hardware and software.

#### III. LEARNING UNITS

# 1. Digital Logic and Digital Systems

I: Fundamental building blocks (logic gates, flip-flops, counters, registers).

# 2. Machine-level Data Representation

I: Bits, bytes and words.

II: Representation of numerical data and numerical bases.

# 3. Assembly-Level Machine Organization

I: Control unit, search instruction (fetch), decoding, and execution.

II: Instruction sets and types (data manipulation, input and output control).

III: Machine and assembler programming language.

IV: Instruction formats.

#### 4. Organization of Memory and Architecture Systems

- I: Coding, data compression and data integrity.
- II: Memory hierarchy.
- III: Cache memories, (address mapping, block size, replacement policies and storage).
- IV: Virtual Memory (paging tables, TBL).

#### 5. Communication and Interface

- I: Basics of input and output: buffering, handshaking, programmed inputs and outputs, inputs and outputs managed by interruptions.
- II: Interruption structures: vectorized and prioritized, recognition of an interruption.
- III: External storage, physical organization and drivers.
- IV: Buses: bus protocols, arbitrage, direct memory access (DMA).
- V: RAID architectures.

### 6. Functional Organization

- I: Control unit: understanding of embedding in hardware vs. micro-programming
- II: Introduction to the parallelism at the instruction level (IPL).

# 7. Multiprocessing and Alternative Architectures

- I: Introduction to SIMD, MIMD, VLIW, EPIC.
- II: Systolic architecture.
- III: Network interconnection (Hypercube, random exchange, mesh, crossbar).
- IV: Shared memory systems.

# 8. Diagnose and safety tools

- I: Evaluation of computer systems
- II: Diagnosis of processing systems
- III: Security and computer viruses

#### 9. Programming platforms and basic nuclei

I: Integrate the hardware and software part through the implementation of a basic core to handle peripherals, main memory, interruptions, etc.

# IV. BIBLIOGRAPHY

- Brey, B. B. The Intel Microprocessors: 8086/8088, 80186, 80286, 80386, 80486, Pentium, Pentium Pro, and Pentium II, Pentium III, Pentium 4, 7th edition. Prentice-Hall. 2005.
- Mano, M. M. Computer System Architecture, 3rd edition. Prentice Hall. 1992.
- Norton, P. Peter Norton's Assembly Language Book for the IBM PC. Peter Norton Foundation Series. Brady Publishing. 1988.

- D. Tullsen, S. Eggers and H. Levy. Simultaneous Multithreading: Maximizing On-Chip Parallelism, in the Proceedings of the 22rd Annual International Symposium on Computer Architecture, June 1995.
- S. Adve and K. Gharachorloo. Shared memory consistency models: a tutorial, in Technical Report WRL-TR 95/7, Digital Western Research Laboratory. September, 1995.
- Carpinelli, J.D. Computer Systems Organization & Architecture. Addison Wesley. 2001.
- Hennesy, J.L. et. al. Computer architecture a quantitative approach, 2ed. 1996.
- Joseph D. Dumas II, Joseph D. Dumas. Computer architecture: fundamentals and principles of computer design. Published by CRC Press. 2006.
- John L. Hennessy, David A. Patterson, Andrea C. Arpaci-Dusseau, Andrea C. Arpaci-Dusseau. Computer architecture: a quantitative approach. Published by Morgan Kaufmann. 2007.