# **Application of Integrated Propulsion Systems for Improving the Dynamical Performance of a Frigate**

Tanner Hugo Espinoza Huillca, Erick David Uceda Sánchez, Roberto Hernan Nuñez Montalvo Adviser: Eng. Jorge Ramírez Rosas Course: Organization and Administration of Naval Industries

College of Mechanical Engineering National University of Engineering

## **SUMMARY**

The artisanal fishing vessels in our country, currently have cargo holds of fish for storage and transfers from the fishing zone to the landing areas; The same ones during this process do not have adequate conditions of health and care of the quality of the fishing, along with the excess of manual manipulation during the own fishing, stowage, unloading, weighing and stowage inside refrigerated trucks for its transport towards the plants of preserves; which in all the mentioned circuit is observed the little deceleration of the decomposition of the fish, mistreatment and excess of manipulation, excess of procedures that attempt with the control and manual stowage of the load; which causes deficiencies in fish quality and high costs of operation and control during the discharge. In order to solve this problem, a radical change in the processes of storage, transport, stowage, fishing, and control is proposed, through the use of a modular refrigerated system that allows to minimize the times of unloading, manual manipulation and to raise the quality of Conservation of fisheries; the same that can be installed to artisanal fishing vessels in Peru.

## **INTRODUCTION**

Artisanal and small-scale fisheries represent an important impact on the economy and food of our country, since they mainly supply the consumption of hydrobiological resources for Peruvians, and this consumption has been growing in recent years.

On the other hand, artisanal fishing is an area not covered by development of efficient engineering techniques, so there are major deficiencies in the operation and care of fishing.

Therefore, the following will be developed:

- Innovate in the process of storage, transport, stowage and control of the artisanal fishing.
- Container shape design for holds.
- Calculation of the thermal capacity and choice of refrigeration equipment.
- Estimating the structure and simulation of static loads.
- Calculation of the weld for the manufacture of the container.
- Choice of generator set for containers.

#### **PROBLEM**

One of the most important deficiencies is that 65% of the vessels store the fish in non-insulated holds, which means that the cargo has direct contact with hot areas, oils and other substances of the vessel; 33% use only ice to delay fishery spoilage and damage; the rest does not use any type of preservation and the hydrobiological resources are arranged among the wineries on the days of fishing.

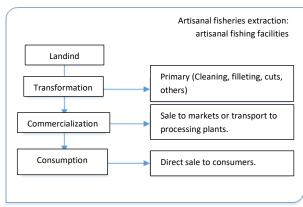
Another important deficiency is that 80% do not have a sanitary protocol, so when arriving at port the manipulation of the fishing takes place in conditions that put at risk the health of the consumers, as well as the environmental impact of the dirt in the Ports and economic losses when transporting the fishing of the vessel to the transport trucks due to clandestine robberies of the fish, discarding of hydrobiological resources in bad state, and delay in port for times of transfer.

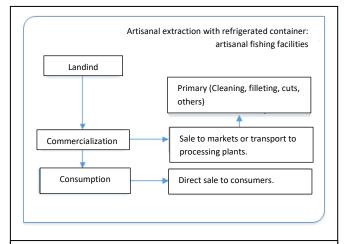
#### **OBJECTIVES**

#### **Main Objective**

Improve the quality of the hydrobiological resource for human consumption with the innovation of the loading, transportation and unloading process.

#### Secondary objectives


- Minimize labor costs in the weighing and unloading processes.
- Reduce the manipulation of the resource.
- Minimize the time of unloading and thus reduce the cost of rent of the piers.
- Improve ecological, sanitary and health conditions.


## **SOLUTION DESCRIPTION**

It is proposed to design a refrigerated modular container that can navigate in the hold of the vessel, so that the fishery is stored in that refrigerated container, and when arriving at port the whole module of the container is transferred to the transport trucks, Thus achieving lower port maneuverability, as well as lower environmental impact in ports, reduced handling and direct contamination of fishing, and a better quality of hydrobiological resources for direct human consumption.

The capacity of the container will be 5m3 since the fishing capacities of artisanal vessels are 5, 10, 20 and 30 m3 depending on the dimensions of the ship, so that they can count on 1, 2, 4 or 6 containers to Respectively.

# **Comparison of fishing extraction processes**





# Solution development process



#### a. Main requirements:

Load capacity: 5m3

**Dimensions** 

Width: 1.80m Height: 1.50m Length: 4.00m

### b. Container shape



Figure 1: Cross view.

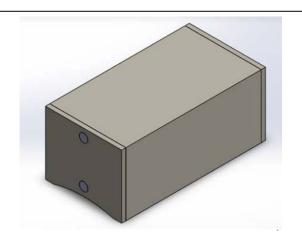



Figure 2: Isometric view.

## c. Calculation of termal load

## Load for wall losses

Qpa=AxUxTx24 (Kcal/day)

A: área of sides 17.4m2

U: k/e = 0.13

Kpolyurethane=0.013 Kcal/hr-m-°C

e = thickness 10cm

Temperature =  $T^{\circ}$ ext –  $T^{\circ}$ in

T°ext=30°C T°in=-0.5°C (inside)

 $Qpa = 1651.40 \ kCal$ 

# **Door opening load**

Qap=Vxnx∆hx24 (Kcal/day)

# Δh calculation (Difference of enthalpies):

| Temperature           | 36                                      | detive Buendaly                         |                                         |
|-----------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| *C                    | 90 % 80 %                               | 70 × 60 ±                               | 50 ≤ 40                                 |
|                       | Activities to the second                | inthalpy kcal/m <sup>8</sup>            |                                         |
| - 45                  | -16.7                                   | -16.7 -16.7                             | -16.7 -16.4                             |
| - 42.5                | -15.6                                   | -15.6 -15.6                             | -15.6 -15.6                             |
| - 40                  | -14.5 -15.6                             | -14.5 -14.5                             | -14.5 -14.5                             |
| - 37.5                | -13.4 -13.4                             | -13.4 -13.4                             | -13.4 -13.4                             |
| - 35                  | -12.3 -12.3                             | -12.3 -12.3                             | -12.4 -12.4                             |
| - 32.5                | -11.2 -11.2                             | -11.3 -11.3                             | -11.4 -11.4                             |
| - 30                  | -10.2 -10.2                             | -10.3 -10.3                             | -10.4 -10.4                             |
| - 27.5                | - 9.2 - 9.2                             | - 9.3 - 9.3                             | - 9.4 - 9.4                             |
| - 25                  | - 8.2 - 8.2                             | - 8.3 - 8.3                             | - 8.4 - 8.4                             |
| - 22.5                | - 7.2 - 7.2                             | - 7.3 - 7.3                             | - 7.4 - 7.4                             |
| - 20                  | - 6.2 - 6.2                             | - 6.3 - 6.3                             | - 6.4 - 6.4                             |
| - 17.5                | - 5.2 - 5.2                             | - 5.3 - 5.4                             | - 5.5 - 5.5                             |
| - 15                  | - 4.2 - 4.2                             | - 4.3 - 4.4                             | - 4.5 - 4.6                             |
| - 12.5                | - 3.1 - 3.2                             | - 3.3 - 3.4                             | - 3.5 - 3.7                             |
| - 10                  | - 2.1 - 2.2                             | - 2.3 - 2.4                             | - 2.5 - 2.7                             |
| - 7.5<br>- 5<br>- 2.5 | - 1.0<br>0.2<br>1.4 - 1.1<br>0.0<br>1.2 | - 1.3 - 1.4<br>- 0.2 - 0.4<br>0.9 - 0.7 | - 1.6 - 1.7<br>- 0.6 - 0.6<br>0.4 - 0.2 |
| 0                     | 2.7 : 2.4                               | 2.1 1.8                                 | 1.5 1.2                                 |
| 2.5<br>5<br>7.5       | 4.0 3.6<br>5.3 4.9<br>6.7 6.3           | 3.3 2.9<br>4.5 4.1<br>5.8 5.3           | 2.6<br>3.6<br>3.7<br>4.7                |
| 10<br>12.5<br>- 15    | 8.2<br>9.9<br>11.7<br>10.8              | 7.1 6.5<br>8.5 7.8<br>10.0 9.2          | 5.9<br>7.1<br>8.4<br>7.6                |
| 17.5<br>20<br>22.5    | 13.5<br>15.5<br>17.7<br>16.5            | 11.6 10.7<br>13.4 17.3<br>15.3 14.0     | 9.8 6.8<br>11.2 10.1<br>12.7 11.5       |
| 25                    | 20.7                                    | 17.3 15.8                               | 14.3 12.9                               |
| 27.5                  | 22.9, 21.2                              | 19.5 17.8                               | 16.1 14.4                               |
| 30                    | 25.9 23.9                               | 21.9 19.9                               | 18.0 16.0                               |
| 32.5                  | 29.1 26.8                               | 24.5 22.2                               | 20.0 17.7                               |
| 35                    | 32.7 30.0                               | 27.5 24.8                               | 22.2 19.6                               |
| 37.5                  | 36.6 33.5                               | 30.6 27.6                               | 24.5 21.6                               |
| 40                    | 40.9 37.3                               | 33.9 30.5                               | 27.0 23.7                               |
| 42.5                  | 45.7 41.5                               | 37.6 31.7                               | 29.8 25.9                               |
| 45                    | 50.8 46.0                               | 41.6 37.3                               | 32.9 28.4                               |

Exterior:

Relative humidity = 83%T° = 30°C

hext =23.9 kCal/m3

Inside:

Relative humidity = 95%T° = -0.5°C hin = **2.42** kCal/m3

# Frequency of opening:

AIR CHANGES IN COLD ROOMS DUE TO OPENING OF DOORS AND INFIL-TRATIONS

| Valum | e of Room<br>V | Air<br>Changes |  |  |  |  |
|-------|----------------|----------------|--|--|--|--|
|       | m <sup>2</sup> | ×/h            |  |  |  |  |
| 6     | - 11           | 1.25           |  |  |  |  |
| 12    | - 21           | 0.85           |  |  |  |  |
| 22    | - 34           | 0.65           |  |  |  |  |
| 35    | - 45           | 0.50           |  |  |  |  |
| 50    | 100 700        | 0.45           |  |  |  |  |
| 80    | - 95           | 0.35           |  |  |  |  |
| 100   | - 130          | 0.30           |  |  |  |  |
| 140   | - 190          | 0.25           |  |  |  |  |
| 200   | - 290          | 0.20           |  |  |  |  |
| 300   | - 490          | 0.175          |  |  |  |  |
| 500   | - 790          | 0.125          |  |  |  |  |
| 800   | - 1190         | 0.100          |  |  |  |  |
| 1200  | - 1990         | 0.085          |  |  |  |  |
| 2000  | - 4950         | 0.065          |  |  |  |  |
| 5000  | and more       | 0.045          |  |  |  |  |

General formula: 
$$n = \frac{70}{24 \times VV}$$
 where  $n = air$  changes per hour  $V[m^3] = volume$  of room

n=1.25

# Qap=4031.36 Kcal

# Load per product:

Qpr=(M/t)(CeaDTa+Cl+CedDtd)x24 (Kcal/day)

Cooling time = 2 hr

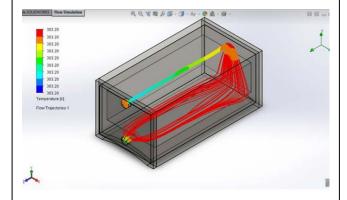
Density of fish = 1075 kg/m3Fish mass = 6725.2 kgCea (before freezing) =  $0.86 \text{ kCal/kg}^{\circ}\text{C}$ 

## Qpr=(M/t)(CeaDTa+Cl+CedDtd)x24 (Kcal/day)

Cooling time = 2 hr

Density of fish = 1075 kg/m3Fish mass = 6725.2 kgCea (before freezing) =  $0.86 \text{ kCal/kg}^{\circ}\text{C}$ 

## Qpr=53498.96 Kcal


$$Qt = \frac{Qpr + Qap + Qpa}{t} = \frac{59181.74 \text{ Kcal}}{18hr} = 3287.87 \frac{kCal}{hr}$$

## d. Equipment selection

The equipments of a refrigerated container type refeer for the necessary heat flow in the previous calculation have been considered.

The equipment of these refeer occupy a space of 0.4m deep, 1.8m wide and 2.2m high. In our case we will rearrange the equipment in 1m depth, 1.8m wide and 1.5m high.

#### e. Simulation of heat flow



With the necessary heat flow conditions and load characteristics, we simulate the heat flow in the container in order to evaluate the distribution of heat and temperatures in the load.

We obtained that the temperature did not fall significantly therefore the calculations have been correct.

#### f. Structure and simulation calculation

Because the structure will be exposed to transfer from the vessel to the truck and vice versa, ie exposed to stresses, as well as conditions in marine environment of corrosion, we chose stainless steel.

| Grado de acero<br>según la serie<br>de Normas | Tipo de ambiente y categoría de corrosión |       |      |        |       |      |            |       |      |        |       |      |
|-----------------------------------------------|-------------------------------------------|-------|------|--------|-------|------|------------|-------|------|--------|-------|------|
|                                               | Rural                                     |       |      | Urbano |       |      | Industrial |       |      | Marino |       |      |
| EN 10088                                      | Baja                                      | Media | Alta | Baja   | Media | Alta | Baja       | Media | Alta | Baja   | Media | Alta |
| 1.4003<br>1.4016                              | YI                                        | x     | x    | YI     | x     | x    | x          | x     | x    | x      | х     | x    |
| 1.4301<br>1.4311<br>1.4541<br>1.4318          | Y                                         | Y     | Y    | Y      | Y     | (Y)  | (Y)        | (Y)   | x    | Y      | (Y)   | x    |
| 1.4362                                        |                                           |       |      |        |       |      |            |       |      |        |       |      |
| 1.4404<br>1.4406<br>1.4571                    | 0                                         | 0     | 0    | 0      | Y     | Y    | Y          | Y     | (Y)  | Y      | Y     | (Y)  |
| 1.4439<br>1.4462                              |                                           |       |      |        |       |      |            |       |      |        |       |      |
| 1.4529<br>1.4539                              | °                                         | 0     | 0    | 0      | 0     | 0    | 0          | 0     | Y    | 0      | 0     | Y    |

| Con   | diciones de corrosión:                                                                                                                                                                                                                             |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Baja  | <ul> <li>Condiciones de corrosión mínimas para el tipo de ambiente. Por ejemplo casos atenuados por una baja humedad o por<br/>bajas temperaturas.</li> </ul>                                                                                      |
| Med   | ia: Condiciones consideradas típicas para el tipo de ambiente.                                                                                                                                                                                     |
| Alta: | <ul> <li>Corrosión susceptible de ser superior a la típica para el tipo de ambiente, incrementada, por ejemplo, por una humedad<br/>alta persistente, temperaturas elevadas, o agentes contaminantes de aire particularmente agresivos.</li> </ul> |
| Clav  | re:                                                                                                                                                                                                                                                |
| 0     | Potencialmente sobreestimado desde el punto de vista de resistencia a la corrosión.                                                                                                                                                                |
| Y     | Probablemente la mejor elección entre resistencia a corrosión y coste.                                                                                                                                                                             |
| Y     | Solamente para aplicaciones interiores. Debería evitarse el empleo de aceros inoxidables ferriticos en aplicaciones con acabado superficial.                                                                                                       |
| x     | Susceptible de sufrir una corrosión excesiva.                                                                                                                                                                                                      |
| (Y)   | Se puede considerar siempre que se tomen las precauciones adecuadas (es decir, se especifique una superficie relativamente                                                                                                                         |

Tabla 2.2. Correspondencia entre designaciones de acero inoxidable

| EN (10088) | Anglaterra<br>RSI | Estados Unidos |         | Alemania           | Suecia | EN (10283) | Francia          | Composición guía |    |     |     |        |  |
|------------|-------------------|----------------|---------|--------------------|--------|------------|------------------|------------------|----|-----|-----|--------|--|
|            |                   | AISI           | UNS     | DIN                | SIS    |            | AFNOR            |                  |    |     |     |        |  |
|            |                   |                |         |                    |        |            |                  | c                | Cr | Ni  | Mo  | Others |  |
| 1.4005     | 416821            | 416            |         | X12CrS13           | -      |            | Z 11 CF 13       |                  |    |     |     |        |  |
| 1.4006     | 410821            | 410            |         | X10Cr13            | -      |            | Z 10 C 13        |                  |    |     |     |        |  |
| 1.4016     | 430517            | 430            |         | X6Cr17             |        | -          | Z 8 C 17         |                  |    |     |     |        |  |
| 1,4021     | 420537            | 420            |         | X20Cr13            | -      | -          | Z 20 C 13        |                  |    |     |     |        |  |
| 1.4301     | 304531            | 304            | \$30400 | X5CrNi18-10        | 2333   | 1.4308     | Z 6 CN 18-09     | 0.07x            | 18 | 8   | -   |        |  |
| 1,4303     | 305519            | 305            | \$30500 | X5CrNi18-12        |        | -          |                  | 0.06x            | 18 | 11  | -   |        |  |
| 1,4305     | 303831            | 303            | \$30300 | X10CrNiS18-9       | 2346   |            |                  | 0.10x            | 18 | 8   |     | 0.35x2 |  |
| 1.4306     |                   | 304L           |         | X2CrNi19-11        | 2352   |            | Z 2 CN 18-10     | 0.030x           | 18 | 10  | -   |        |  |
| 1,4307     | 304511            | 304L           | \$30403 |                    | 2352   |            |                  | 0.030x           | 18 | 8   | -   |        |  |
| 1.4310     | 301521            | 301            | S30100  | X12CrNi17-7        | 2331   | -          |                  | .05/.15          | 17 | 6   | -   |        |  |
| 1.4311     | 304861            | 304LN          | \$30453 | X2CrNiN18-10       | 2371   | 1.4309     | Z 2 CN 18-10 Az  | 0.030x           | 18 | 9   | -   | 0.22x2 |  |
| 1.4372     |                   | 201            | \$20100 |                    |        | -          |                  | 0.15x            | 17 | 4.5 | -   | 6.5Mr  |  |
| 1.4401     | 316831            | 316            | \$31600 | X5CrNiMo17-12-2    | 2347   |            | Z 6 CND 17-11    | 0.07x            | 17 | 11  | 2   |        |  |
| 1,4404     | 316511            | 316L           | \$31603 | X2CrNiMo17-13-2    | 2348   | 1.4408     | Z 2 CND 17-12    | 0.030x           | 17 | 11  | 2   |        |  |
| 1.4406     | 316861            | 316LN          | \$31653 | X2CrNiMoN17-12-2   |        | 1.4409     | Z 2 CND 17-12 Az | 0.030x           | 17 | 11  | 2   | 0.22x2 |  |
| 1,4432     | 316813            | FIRE           | -       |                    | 2353   |            |                  | 0.030x           | 17 | П   | 2.5 |        |  |
| 1,44.55    | 316513            | 516F           | -       | ACrNiMo18-14-3     | 4353   |            | Z 2 CND 17-13    | 0.030x           | 17 | 13  | 2.5 |        |  |
| 1,4436     | 316833            | 316            | -       | X5CrNiMo17-13-3    | 2343   |            |                  | 0.05             | 17 | 11  | 2.5 |        |  |
| .4438      | 317S12            | 317L           | S31703  | -                  | 2367   | -          |                  | 0.030x           | 18 | 13  | 3   |        |  |
| 1.4439     |                   | -              | -       | X2CrNiMoN17-13-5   |        | 1.4446     |                  | 0.030x           | 17 | 13  | 4   | 0.22x  |  |
| 1.4462     | Duplex 2205       |                | S31803  | X2CrNiMoN22-5-3    | -      | -          | Z 2 CND 22-5 Az  | 0.030x           | 22 | 5   | 2.5 | 0.22x  |  |
| 1.4541     | 321831            | 321            | \$32100 | X6CrNiTi18-10      | 2337   |            | Z 6 CNT 18-10    | 0.08x            | 18 | 9   | -   | 0.5Ti  |  |
| 1.4550     | 347531            | 347            | \$34700 | X6CrNiNb18-10      | 2338   | 1.4552     |                  | 0.08x            | 18 | 9   |     | 0.5Nb  |  |
| 1.4563     |                   |                | N08028  | X1NiCrMoCu31-27-4  | 2584   |            |                  | 0.02x            | 26 | 30  | 3.0 | 1.0Cu  |  |
| 1,4567     | 394517            | 304Cu          | \$30430 |                    |        | -          |                  | 0.04x            | 18 | 9   | -   | 4xCu   |  |
| 1.4571     | 320831            | (316Ti)        | \$31635 | X6CrNoMoTi17-12-2  | 2350   | 1.4581     | Z 6 CNDT 17-12   | 0.08x            | 17 | 11  | 2   | 0.5Ti  |  |
| 1,4539     | 904513            |                | N08904  | X1CrNiMoCuN25-20-5 | 2562   | 1.4584     | Z 1 CNDU 25-20   | 0.020x           | 19 | 24  | 4   | 1.5Cu  |  |
| 1,4547     |                   |                | \$31254 |                    | 2378   | 1.4593     |                  | 0.020x           | 20 | 18  | 6   | 0.750  |  |
| 1,4529     |                   |                | N08925  | XINiCrMoCuN25-20-6 |        | 1.4588     |                  | 0.020x           | 19 | 24  | 6   | 1,250  |  |

Therefore, we chose 316L stainless steel.

The thickness of the plate will be 6.4mm according to the calculation estimates and simulation results.

## g. Calculation of welding

The welding shall be carried out in accordance with EN ISO 15609-1 Specification and qualification of welding procedures for metallic materials. Welding procedure specification Arc welding. And the welders will be qualified according to the EN 287-1 Qualification test of welders. Fusion welding. Steels.

# **OBSERVATIONS**

- 80% of what is produced by artisanal fishing vessels is destined for the direct consumption of Peruvians.
- 65% of these vessels do not have insulated holds reducing the quality of fishing.
- 80% of these vessels do not have health protocols, therefore, they contaminate fishing and docks.
- The energy of the modular containers must be independently of the electrical board of the boat in order not to depend on the maximum demand of the ship.
- It is necessary to make modifications to the ship to implement the modular containers.

#### **CONCLUSIONS**

- It is estimated that the time of port delay using the methodology of refrigerated modular containers decreases to 25% in the discharge.
- It is expected that the labor involved in the process of storage, weighing and unloading will be practically nil.
- The stability and structural analysis must be performed due to the modifications and loads added to the boat.
- By improving the quality of conservation and health of the fish, it can be sold at a higher price and the customer will have the option of consuming a healthier product.
- Improvement of environmental conditions in the dock due to the reduction of pollution of the sea waters with fishing waste and other ones of the process of unloading and weighing.

## **BIBLIOGRAPHY**

- [1] Artisanal Fisheries in Peru, Jorge Amadeo Medicina Di Paolo, University of Lima, 2014.
- [2] Artisanal Fisheries: Opportunities for regional development, Elsa Galarza and Johanna Kámiche, Universidad del Pacífico, 2015.
- [3] Manual of Design for Structural Stainless Steel-3rd Edition, Steel Construction Institute, 2006.
- [4] Transport of Perishable Goods in Container Refrigerator, Josep Oriol Rovira Monge, Barcelona, 2015.