

PRODUCTION I (PP 414)

SUBJECT:

ANALYSIS OF WELL LOSS RATIO AND DECLINE CURVES

BY:

JORDAN PEREZ LIZARDO STEVEN CIPRA DEXTRE

PROFESSOR

MSc. LUIS ANTONIO DEL CASTILLO DE RODRIGUEZ

LIMA, PERU

2017

College of Petroleum, Natural Gas and Petrochemical Engineering Petroleum and Natural Gas Engineering Program

COURSE: PRODUCTION I (PP-414)

Professor: MSc. Luis Del Castillo Rodríguez

Academic Semester: 2016-2

Date: December, 7th 2016

LOSS RATIO

It is the inverse of the declination:

$$q \qquad 1 \qquad 1$$

$$a = -\frac{1}{1} = -q^{-n} = -(q_0^{-n} + nkt)$$

$$dq/dt \quad k \qquad k$$

$$q_0^{-n} \qquad da$$

$$a = \frac{1}{1} + nt; \quad \frac{1}{1} = n$$

$$k \qquad dt$$

This means that the first derivative of the rate of loss with respect to time is the hyperbolic constant.

The slope of the plot of a vs t, in linear regression will yield n.

The hyperbolic constant is the slope function between the values of a in relation to time.

The initial a, is the intersection function of the values of a in relation to time.

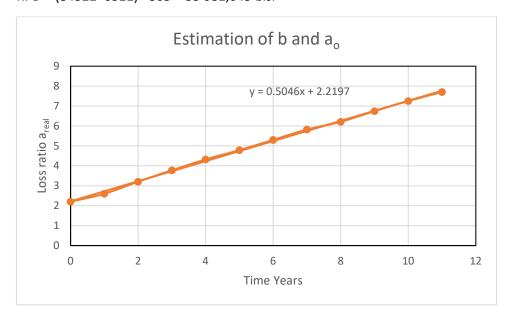
The calculated a, are found starting from the initial a and adding for each successive time the hyperbolic constant found.

The calculated q is obtained one by one, starting from an assumed initial q, close to the initial real q, with the following operation:

$$q_n = q_{(n-1)} * (a_{(n-1)} - 1)/a_{(n-1)}$$
 para $n = 1, 2, 3, ..., n-1, n$

Finally, we use the Excel solver tool, to match the sum of the real q with the calculated q. Subsequently, the data can be extrapolated to the desired time or to the economic limit.

College of Petroleum, Natural Gas and Petrochemical Engineering Petroleum and Natural Gas Engineering Program

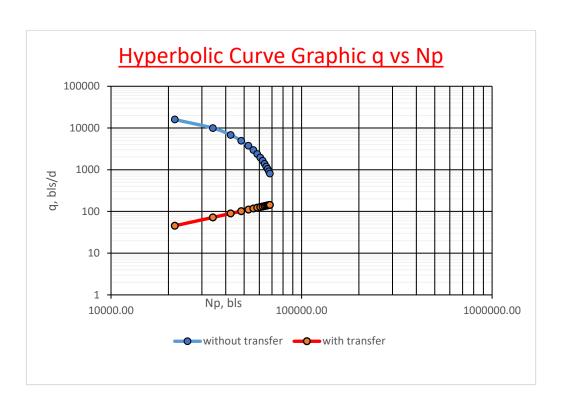

Example: Production data from 0 to 12 years

Extrapolate production up to 22 years.

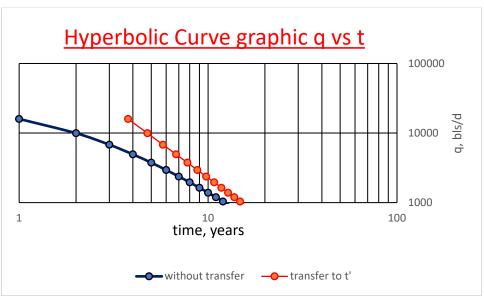
What is the Reserve Proved Development (RPD) until the age of 22?

t <u>Years</u> 0	q <u>b/d</u> 29500	Δq 13400	a r <u>eal</u> 2.20	a <u>calc.</u> 2.22	q b/d <u>calc</u> 29055	Slop	e: 0.5045	585
1	16100	6190	2.60	2.72	15965	Inte	rsection:	2.22
2	9910	3090	3.21	3.23	10105	<u>t</u>	q calc.	a calc.
3	6820	1805	3.78	3.73	6975	13	974	8.78
4	5015	1160	4.32	4.24	5107	14	863	9.28
5	3855	805	4.79	4.74	3902	15	770	9.79
6	3050	575	5.30	5.25	3079	16	691	10.29
7	2475	425	5.82	5.75	2492	17	624	10.80
8	2050	330	6.21	6.26	2059	18	566	11.30
9	1720	255	6.75	6.76	1730	19	516	11.81
10	1465	202	7.25	7.27	1474	20	472	12.31
11	1263	164	7.70	7.77	1271	21	434	12.82
12	1099			8.27	1107	22	400	
	84322				84322		6311	

RPD = (84322+6311) *365 = 33 081,045 bls.



College of Petroleum, Natural Gas and Petrochemical Engineering Petroleum and Natural Gas Engineering Program


b) With the data of the previous problem, perform the transfer of axes to have a line in the graphs on logarithmic paper of q (rate) vs t (time) and q (rate) vs N_p (accumulated production bls)

D _o =	0.72165527	n=		
time	\mathbf{q}_{t}	N_p	t'	$q_{t^{\prime}}$
0	29500			
1	15965	21612.02	3.77	45.40
2	9952.44	34269.35	4.77	71.99
3	6802.35	42497.35	5.77	89.28
4	4941.57	48295.13	6.77	101.46
5	3751.66	52600.83	7.77	110.50
6	2944.99	55924.77	8.77	117.49
7	2373.06	58568.38	9.77	123.04
8	1952.89	60721.12	10.77	127.56
9	1635.18	62508.11	11.77	131.32
10	1389.14	64015.26	12.77	134.48
11	1194.72	65303.52	13.77	137.19
12	1038.43	66417.36	14.77	139.53
13	910.92	67389.95	15.77	141.57
14	805.53	68246.56	16.77	143.37

College of Petroleum, Natural Gas and Petrochemical Engineering
Petroleum and Natural Gas Engineering Program

The data of the rate b / d have some variation since the solver works with discrete declination and the graphs with nominal declination.

References

- 1. Del Castillo Rodríguez Luis Antonio et al.: "Analysis of Decline Curves", Thesis Graduate, UNI Petroleum Faculty, 1963.
- 2. J.J. Arps et al.: "Analysis of Decline Curves", Chapter II, Petroleum Economics, Houston Meeting, May 1944, 228-246, SPE . 945228-G-P.